
1

Sequential Circuit Design

with Verilog

ECE 152A – Summer 2009

July 29, 2009 ECE 152A - Digital Design Principles 2

Reading Assignment

� Brown and Vranesic

� 6 Combinational – Circuit Building Blocks

� 6.6 Verilog for Combinational Circuits

� 6.6.1 The Conditional Operator

� 6.6.2 The If-Else Statement

� 6.6.3 The Case Statement

2

July 29, 2009 ECE 152A - Digital Design Principles 3

Reading Assignment

� Brown and Vranesic (cont)

� 7 Flip-Flops, Registers, Counters, and a Simple

Processor

� 7.12 Using Storage Elements with CAD Tools

� 7.12.2 Using Verilog Constructs for Storage Elements

� 7.12.3 Blocking and Non-Blocking Assignments

� 7.12.4 Non-Blocking Assignments for Combinational

Circuits

� 7.12.5 Flip-Flops with Clear Capability

� 7.13 Using Registers and Counters with CAD Tools

� 7.13.3 Using Verilog Constructs for Registers and Counters

July 29, 2009 ECE 152A - Digital Design Principles 4

The Gated D Latch

� Transparent on high phase of clock

module D_latch(D, Clk, Q);

input D, Clk;

output Q;

reg Q;

always @(D or Clk)

if (Clk)

Q = D;

endmodule

3

July 29, 2009 ECE 152A - Digital Design Principles 5

The Gated D Latch

� The “if” construct

� When D or CLK change value:

� if CLK = 1, set Q = D

� Since there is no else, assignment occurs only

when CLK = 1

� Q follows D when CLK = 1

� Q remains latched on CLK = 0

� “Always” construct triggered by change in value of

D or CLK

� Either change can cause the output to change

July 29, 2009 ECE 152A - Digital Design Principles 6

The Gated D Latch

� The “always” construct

� Responds to changes in the signals on the

sensitivity list

� always @ (D or Clk)

� Example above is “level sensitive”

� When D or Clk changes value

� Make edge triggered by using Verilog keywords

posedge and negedge

� i.e., always @ (posedge Clk)

4

July 29, 2009 ECE 152A - Digital Design Principles 7

The Edge Triggered D Flip-Flop

� Positive edge triggered

module flipflop(D, Clock, Q);

input D, Clock;

output Q;

reg Q;

always @(posedge Clock)

Q = D; // Q+ = D, characteristic function

endmodule

July 29, 2009 ECE 152A - Digital Design Principles 8

The Edge Triggered D Flip-Flop

� D is not included on sensitivity list since it

cannot cause output (Q) to change

� No transparent phase with edge triggered flip-

flops

� Characteristic function used in assignment

statement

� Defining next state (Q+) of the flip-flop

5

July 29, 2009 ECE 152A - Digital Design Principles 9

The Edge Triggered JK Flip-Flop

� Assign characteristic function to Q on rising

clock edge (Q+ = JQ’ + K’Q)

module JKflipflop(J,K, Clock, Q);

input J,K, Clock;

output Q;

reg Q;

always @(posedge Clock)

Q = J && ~Q || ~K && Q; // Q+ = JQ' + K'Q

endmodule

July 29, 2009 ECE 152A - Digital Design Principles 10

The Edge Triggered JK Flip-Flop

� Functional Simulation

set hold reset hold toggle toggle

6

July 29, 2009 ECE 152A - Digital Design Principles 11

The Edge Triggered T Flip-Flop

� Assign characteristic function to Q on rising

clock edge (Q+ = T XOR Q)

module Tflipflop(T, Clock, Q);

input T, Clock;

output Q;

reg Q;

always @(posedge Clock)

Q = T ^ Q; // Q = T XOR Q

endmodule

July 29, 2009 ECE 152A - Digital Design Principles 12

The Edge Triggered T Flip-Flop

� Functional Simulation

hold toggle hold toggle toggle hold

7

July 29, 2009 ECE 152A - Digital Design Principles 13

Blocking and Non-Blocking Assignments

� Q = D

� Equal sign (=) signifies a blocking assignment

� Statements are evaluated in the order in

which they are written

� If a variable is given a value by a blocking

assignment, the new value is used in evaluating

all subsequent statements in the block

July 29, 2009 ECE 152A - Digital Design Principles 14

Blocking and Non-Blocking Assignments

� Blocking Assignment Statement Example

module example1(D, Clock, Q1, Q2);

input D, Clock;

output Q1, Q2;

reg Q1, Q2;

always @(posedge Clock)

begin

Q1 = D;

Q2 = Q1;

end

endmodule

8

July 29, 2009 ECE 152A - Digital Design Principles 15

Blocking and Non-Blocking Assignments

� Example synthesizes two positive edge

triggered D flip-flops

� Both flip-flops triggered by same clock edge

� Both assignments in always block are

blocking

� Q1 gets the value D

� Q2 then gets the new value of Q1

� Q1+, which is now D

July 29, 2009 ECE 152A - Digital Design Principles 16

Blocking and Non-Blocking Assignments

� The synthesized circuit with blocking

assignment statements

9

July 29, 2009 ECE 152A - Digital Design Principles 17

Blocking and Non-Blocking Assignments

� Non-Blocking Statements (<=)

� Non-blocking assignment statements in an always

block are evaluated using the values of the

variables when the block is entered

always @(posedge Clock)

begin

Q1 <= D; // substitute

Q2 <= Q1; // non-blocking assignments

end

July 29, 2009 ECE 152A - Digital Design Principles 18

Blocking and Non-Blocking Assignments

� Q2 gets the value of Q1 when the always

block is entered

� The synthesized circuit with non-blocking

assignment statements

� Flip-flops connected in cascade

10

July 29, 2009 ECE 152A - Digital Design Principles 19

Blocking and Non-Blocking Assignments

� Blocking Assignment Statement Example

module example3(x1, x2, x3, Clock, f, g);

input x1, x2, x3, Clock;

output f, g;

reg f, g;

always @(posedge Clock)

begin

f = x1 & x2;

g = f | x3;

end

endmodule

July 29, 2009 ECE 152A - Digital Design Principles 20

Blocking and Non-Blocking Assignments

� Both f and g are implemented as the outputs

of D flip-flops

� Synthesized as flip-flops because the sensitivity

list of the always block specifies posedge Clock

� “g” gets the new value (Q+) of “f” OR’d with x3

11

July 29, 2009 ECE 152A - Digital Design Principles 21

Blocking and Non-Blocking Assignments

� The synthesized circuit

� Blocking assignment statements

July 29, 2009 ECE 152A - Digital Design Principles 22

Blocking and Non-Blocking Assignments

� If assignment statements changed to non-

blocking

always @(posedge Clock)

begin

f <= x1 & x2;

g <= f | x3;

end

� “g” gets the previous value of “f” (the value

when the always block is entered, i.e., Q)

12

July 29, 2009 ECE 152A - Digital Design Principles 23

Blocking and Non-Blocking Assignments

� The synthesized circuit

� Non-blocking assignment statements

July 29, 2009 ECE 152A - Digital Design Principles 24

Blocking and Non-Blocking Assignments

� General Rule

� The results of non-blocking assignments are

visible only after all of the statements in the

always block have been evaluated

� When there are multiple assignments to the same

variable inside an always block, the result of the

last assignment is maintained

13

July 29, 2009 ECE 152A - Digital Design Principles 25

Flip-Flops with Clear

� Asynchronous Clear

module flipflop(D, Clock, Resetn, Q);

input D, Clock, Resetn;

output Q;

reg Q;

always @(negedge Resetn or posedge Clock)

if (!Resetn)

Q <= 0;

else

Q <= D;

endmodule

July 29, 2009 ECE 152A - Digital Design Principles 26

Flip-Flops with Clear

� Synchronous Clear

module flipflop(D, Clock, Resetn, Q);

input D, Clock, Resetn;

output Q;

reg Q;

always @(posedge Clock)

if (!Resetn) // check value of reset on clock edge

Q <= 0;

else

Q <= D;

endmodule

14

July 29, 2009 ECE 152A - Digital Design Principles 27

4-Bit Binary Counter

� Counter includes reset and enable

module upcount(Resetn, Clock, E, Q);

input Resetn, Clock, E;

output [3:0] Q;

reg [3:0] Q;

always @(negedge Resetn or posedge Clock)

if (!Resetn)

Q <= 0; // asynchronous reset overrides enable

else if (E)

Q <= Q + 1; // synthesizes adder circuit

endmodule

July 29, 2009 ECE 152A - Digital Design Principles 28

4-Bit Binary Counter

� Functional Simulation

asynchronous

reset

enable

count

reset enable

15

July 29, 2009 ECE 152A - Digital Design Principles 29

Finite State Machine (FSM) Design

� Recall state diagram for JK flip-flop counter

from previous lecture

100 111

011

000

010

July 29, 2009 ECE 152A - Digital Design Principles 30

Finite State Machine (FSM) Design

� The State Table

010111

XXX011

XXX101

111001

000110

110010

XXX100

001000

C+B+A+CBA

NSPS

16

July 29, 2009 ECE 152A - Digital Design Principles 31

Finite State Machine (FSM) Design

� Can’t use addition operator because

sequence is not binary count

� See previous example

� Use parameter statement to define states

parameter [2:0] A = 3'b000, B = 3'b100, C = 3'b111,

D = 3'b010, E = 3'b011;

July 29, 2009 ECE 152A - Digital Design Principles 32

Finite State Machine (FSM) Design

� Use case statement to implement state

transitions

always @ (posedge clock)

case(count)

A: count <= B;

B: count <= C;

C: count <= D;

D: count <= E;

E: count <= A;

default: count <= A;

endcase

17

July 29, 2009 ECE 152A - Digital Design Principles 33

Finite State Machine (FSM) Design

� The complete module

module jk_counter(count, clock);

input clock;

output [2:0] count;

reg [2:0] count;

parameter [2:0] A = 3'b000, B = 3'b100, C = 3'b111,

D = 3'b010, E = 3'b011;

always @ (posedge clock)

case(count)

A: count <= B;

B: count <= C;

C: count <= D;

D: count <= E;

E: count <= A;

default: count <= A;

endcase

endmodule

July 29, 2009 ECE 152A - Digital Design Principles 34

Finite State Machine (FSM) Design

� Functional Simulation

000 100 111 010 011 000 100

